Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.034
Filtrar
1.
Sci Adv ; 10(15): eadk7678, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598631

RESUMO

The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Microscopia Crioeletrônica , Metilação , Histona Desacetilases/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593621

RESUMO

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Histona Desacetilases/metabolismo , Desacetilase 6 de Histona/metabolismo , Compostos de Bifenilo , Hidrazinas , Inibidores de Histona Desacetilases/farmacologia , Acetilação
3.
PLoS One ; 19(4): e0302374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635564

RESUMO

While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.


Assuntos
Corticosterona , Histona Desacetilases , Camundongos , Animais , Histona Desacetilases/metabolismo , Corticosterona/metabolismo , Aprendizagem , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Memória de Longo Prazo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/metabolismo , Hipocampo/metabolismo
4.
Acc Chem Res ; 57(8): 1135-1148, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530703

RESUMO

ConspectusThe zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/ß fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.


Assuntos
Lisina , Neoplasias , Humanos , Epigênese Genética , Isoenzimas/metabolismo , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Poliaminas/química , Catálise , Histonas/metabolismo , Zinco/química , Água/metabolismo
5.
Cell Rep ; 43(3): 113788, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38461415

RESUMO

Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.


Assuntos
Orthopoxvirus , Vírus da Varíola , Vírus da Varíola dos Macacos/metabolismo , Vírus da Varíola/metabolismo , Orthopoxvirus/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Vírus Vaccinia/fisiologia , Histona Desacetilases/metabolismo
6.
Sci Rep ; 14(1): 7083, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528189

RESUMO

We aimed to identify the key potential insulin resistance (IR)-related genes and investigate their correlation with immune cell infiltration in type 2 diabetes (T2D). The GSE78721 dataset (68 diabetic patients and 62 controls) was downloaded from the Gene Expression Omnibus database and utilized for single-sample gene set enrichment analysis. IR-related genes were obtained from the Comparative Toxicology Genetics Database, and the final IR-differentially expressed genes (DEGs) were screened by intersecting with the DEGs obtained from the GSE78721 datasets. Functional enrichment analysis was performed, and the networks of the target gene with microRNA, transcription factor, and drug were constructed. Hub genes were identified based on a protein-protein interaction network. Least absolute shrinkage and selection operator regression and Random Forest and Boruta analysis were combined to screen diagnostic biomarkers in T2D, which were validated using the GSE76894 (19 diabetic patients and 84 controls) and GSE9006 (12 diabetic patients and 24 controls) datasets. Quantitative real-time polymerase chain reaction was performed to validate the biomarker expression in IR mice and control mice. In addition, infiltration of immune cells in T2D and their correlation with the identified markers were computed using CIBERSORT. We identified differential immune gene set regulatory T-cells in the GSE78721 dataset, and T2D samples were assigned into three clusters based on immune infiltration. A total of 2094 IR-DEGs were primarily enriched in response to endoplasmic reticulum stress. Importantly, HDAC9 and ARRDC4 were identified as markers of T2D and associated with different levels of immune cell infiltration. HDAC9 mRNA level were higher in the IR mice than in control mice, while ARRDC4 showed the opposite trend. In summary, we discovered potential vital biomarkers that contribute to immune cell infiltration associated with IR, which offers a new sight of immunotherapy for T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Histona Desacetilases , Resistência à Insulina , MicroRNAs , Animais , Humanos , Camundongos , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Imunoterapia , Insulina , Resistência à Insulina/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474064

RESUMO

Our previous study has reported that metastasis-associated protein 2 (MTA2) plays essential roles in tumorigenesis and aggressiveness of gastric cancer (GC). However, the underlying molecular mechanisms of MTA2-mediated GC and its upstream regulation mechanism remain elusive. In this study, we identified a novel circular RNA (circRNA) generated from the MTA2 gene (circMTA2) as a crucial regulator in GC progression. CircMTA2 was highly expressed in GC tissues and cell lines, and circMTA2 promoted the proliferation, invasion, and metastasis of GC cells both in vitro and in vivo. Mechanistically, circMTA2 interacted with ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) to restrain MTA2 ubiquitination and stabilize MTA2 protein expression, thereby facilitating tumor progression. Moreover, circMTA2 was mainly encapsulated and transported by exosomes to promote GC cell progression. Taken together, these findings uncover that circMTA2 suppresses MTA2 degradation by interacting with UCHL3, thereby promoting GC progression. In conclusion, we identified a cancer-promoting axis (circMTA2/UCHL3/MTA2) in GC progression, which paves the way for us to design and synthesize targeted inhibitors as well as combination therapies.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo , Proteólise , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Ubiquitina Tiolesterase/metabolismo
8.
Future Med Chem ; 16(7): 601-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436113

RESUMO

Aim: The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. Materials & methods: The target compounds (3a-c, 4a-c and 5a-c) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). Results: Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound 4b possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. Conclusion: Compound 4b could be considered a good antitumor candidate to go further into in vivo and clinical studies.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Antineoplásicos/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
9.
Cell Commun Signal ; 22(1): 182, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491522

RESUMO

BACKGROUND: Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS: In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS: Here, we found that AGEs activated Wnt/ß-catenin signaling pathway and enhanced the ß-catenin protein level by affecting the expression of ß-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate ß-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of ß-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-ß-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION: Collectively, this study offers insight into the pathophysiological functions of ß-catenin in diabetic angiogenesis.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Animais , Humanos , Camundongos , 60489 , beta Catenina/metabolismo , Histona Desacetilases/metabolismo , Fosforilação , Proteínas Repressoras/metabolismo , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
10.
Cell Chem Biol ; 31(3): 514-522.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38460516

RESUMO

It is a challenge for the traditional affinity methods to capture transient interactions of enzyme-post-translational modification (PTM) substrates in vivo. Herein we presented a strategy termed proximity labeling-based orthogonal trap approach (ProLORT), relying upon APEX2-catalysed proximity labeling and an orthogonal trap pipeline as well as quantitative proteomics to directly investigate the transient interactome of enzyme-PTM substrates in living cells. As a proof of concept, ProLORT allows for robust evaluation of a known HDAC8 substrate, histone H3K9ac. By leveraging this approach, we identified numerous of putative acetylated proteins targeted by HDAC8, and further confirmed CTTN as a bona fide substrate in vivo. Next, we demonstrated that HDAC8 facilitates cell motility via deacetylation of CTTN at lysine 144 that attenuates its interaction with F-actin, expanding the underlying regulatory mechanisms of HDAC8. We developed a general strategy to profile the transient enzyme-substrate interactions mediated by PTMs, providing a powerful tool for identifying the spatiotemporal PTM-network regulated by enzymes in living cells.


Assuntos
Cortactina , Histona Desacetilases , Histona Desacetilases/metabolismo , Acetilação , Cortactina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Movimento Celular
11.
Nat Commun ; 15(1): 2320, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485937

RESUMO

SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo
12.
Anticancer Res ; 44(4): 1739-1750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538000

RESUMO

BACKGROUND/AIM: Only a few studies have examined the expression of nucleosome remodeling and deacetylase complex in endometrial carcinoma (EC). The aim of this study was to analyze the expressions of histone deacetylase (HDAC1), HDAC2, and chromodomain helicase DNA-binding protein 4 (CHD4) in EC. PATIENTS AND METHODS: Sixty cases of EC were categorized into two clusters based on the expression levels of the three proteins. RESULTS: Cluster 1 (C1) exhibited elevated expressions of HDAC2 and CHD4 compared with cluster 2 (C2). Notably, 75% of cases in C2 represented non-aggressive histological types, whereas 37.5% of cases in C1 manifested aggressive types. C2 exclusively comprised pathological tumor stage 1 (pT1) tumors, whereas C1 included pT2 and pT3 tumors. In C1, 25% of cases displayed aberrant p53 expression, contrasting with the absence of such expression in C2. Furthermore, only one patient in C2 experienced disease recurrence, whereas 20.8% of patients in C1 developed recurrent tumors. CONCLUSION: High HDAC2 and CHD4 expression may be associated with adverse clinicopathological characteristics in EC. Further studies are needed to validate these results.


Assuntos
Neoplasias do Endométrio , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Humanos , Feminino , Nucleossomos , Recidiva Local de Neoplasia , Histona Desacetilases/metabolismo , Histona Desacetilase 1
13.
Anal Chem ; 96(12): 4817-4824, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482584

RESUMO

Protein acetylation, a fundamental post-translational modification, plays a critical role in the regulation of gene expression and cellular processes. Monitoring histone deacetylases (HDACs) is important for understanding epigenetic dynamics and advancing the early diagnosis of malignancies. Here, we leverage the dynamic characteristics of DNA-peptide interactions in biomimetic nanochannels to develop a HDAC detection method. In specific, the catalysis of peptide deacetylation by HDACs triggers alterations in the charge states of the nanochannel surface to accommodate DNA molecules. Then, the interaction between DNA and peptides shifts the nanochannel surface charge from positive to negative, leading to a reversal of the ion current rectification (ICR). By calculation of the ICR ratio, quantitative detection of HDACs can be efficiently achieved using the nanochannel-based method in an enzyme-free and label-free manner. Our experimental results demonstrate that HDACs can be detected by using this method within a concentration range of 0.5-500 nM. The innate simplicity and efficiency of this strategy may render it a valuable tool for advancing both fundamental research and clinical applications in the realm of epigenetics and personalized medicine.


Assuntos
Biomimética , Histona Desacetilases , Histona Desacetilases/metabolismo , DNA/metabolismo , Peptídeos/metabolismo , Epigênese Genética , Acetilação , Inibidores de Histona Desacetilases
14.
J Med Chem ; 67(6): 4950-4976, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456618

RESUMO

Histone deacetylases (HDACs) inhibitors such as vorinostat (SAHA) has been used to treat hematologic malignancies (rather than solid tumors) and have been found to suppress the JAK/STAT, a critical signal pathway for antitumor immunity, while PARP7 inhibitor RBN-2397 could activate the type I interferons (IFN-I) pathway, facilitating downstream effects such as STAT1 phosphorylation and immune activation. To elucidate whether simultaneous inhibition of these two targets could interfere with these two signal pathways, a series of pyridazinone-based PARP7/HDACs dual inhibitors have been designed, synthesized, and evaluated in vitro and in vivo experiments. Compound 9l was identified as a potent and balanced dual inhibitor for the first time, exhibiting excellent antitumor capabilities both in vitro and in vivo. This suggests that 9l can be used as a valuable tool molecule for investigating the relationship between anticancer immunity and HDAC inhibition.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Vorinostat/farmacologia , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células
15.
FASEB J ; 38(5): e23526, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430456

RESUMO

Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.


Assuntos
Barreira Hematotesticular , Histona Desacetilases , Células de Sertoli , Animais , Masculino , Camundongos , Barreira Hematotesticular/metabolismo , Diferenciação Celular , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Junções Íntimas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
16.
Bioorg Chem ; 146: 107284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493640

RESUMO

Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.


Assuntos
Antineoplásicos , Hidantoínas , Leucemia , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Hidantoínas/farmacologia , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Leucemia/tratamento farmacológico , Zinco/metabolismo , Simulação de Acoplamento Molecular
17.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
18.
Eur J Med Chem ; 269: 116324, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38520762

RESUMO

The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.


Assuntos
Neoplasias , Ribonucleotídeo Redutases , Humanos , Ribonucleotídeo Redutases/uso terapêutico , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/genética
19.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411140

RESUMO

Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.


Assuntos
Drosophila melanogaster , Histona Desacetilases , Humanos , Camundongos , Animais , Histona Desacetilases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Odorantes , Diacetil , Inibidores de Histona Desacetilases/farmacologia , Drosophila/genética , Sistema Nervoso/metabolismo , Expressão Gênica , Acetilação
20.
Biomolecules ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397377

RESUMO

A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.


Assuntos
Células Endoteliais , Histona Desacetilases , Histona Desacetilases/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Zinco/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Pulmão/metabolismo , Histonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...